Learning to Perceive Objects for Autonomous Navigation

نویسندگان

  • Jing Peng
  • Bir Bhanu
چکیده

Current machine perception techniques that typically use segmentation followed by object recognition lack the required robustness to cope with the large variety of situations encountered in real-world navigation. Many existing techniques are brittle in the sense that even minor changes in the expected task environment (e.g., diierent lighting conditions, geometrical distortion, etc.) can severely degrade the performance of the system or even make it fail completely. In this paper we present a system that achieves robust performance by using local reinforcement learning to induce a highly adaptive mapping from input images to seg-mentation strategies for successful recognition. This is accomplished by using the conndence level of model matching as reinforcement to drive learning. Local reinforcement learning gives rises to better improvement in recognition performance. The system is veri-ed through experiments on a large set of real images of traac signs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm

In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...

متن کامل

A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking

A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...

متن کامل

To appear in Autonomous Robots Learning to Perceive Objects for Autonomous Navigation

Current machine perception techniques that typi cally use segmentation followed by object recognition lack the required robustness to cope with the large variety of situations encountered in real world naviga tion Many existing techniques are brittle in the sense that even minor changes in the expected task environ ment e g di erent lighting conditions geometrical distortion etc can severely de...

متن کامل

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

Learning Visual Landmarks for Mobile Robot Topological Navigation

1.1 Introduction Relevant progress has been done, within the Robotics field, in mechanical systems, actuators, control and planning. This fact, allows a wide application of industrial robots, where manipulator arms, Cartesian robots, etc., widely outcomes human capacity. However, the achievement of a robust and reliable autonomous mobile robot, with ability to evolve and accomplish general task...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Auton. Robots

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1999